Countable choice and pseudometric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On countable choice and sequential spaces

Under the axiom of choice, every first countable space is a FréchetUrysohn space. Although, in its absence even R may fail to be a sequential space. Our goal in this paper is to discuss under which set-theoretic conditions some topological classes, such as the first countable spaces, the metric spaces or the subspaces of R, are classes of Fréchet-Urysohn or sequential spaces. In this context, i...

متن کامل

On Pseudometric Spaces 1

The terminology and notation used here have been introduced in the following articles: [9], [4], [13], [12], [10], [8], [2], [3], [1], [14], [7], [11], [5], and [6]. Let M be a metric structure, and let x, y be elements of the carrier of M . The predicate x ≈ y is defined by: (Def.1) ρ(x, y) = 0. Let M be a metric structure, and let x be an element of the carrier of M . The functor x yielding a...

متن کامل

Countable Choice and Compactness

We work in set-theory without choice ZF. Denoting by AC(N) the countable axiom of choice, we show in ZF+AC(N) that the closed unit ball of a uniformly convex Banach space is compact in the convex topology (an alternative to the weak topology in ZF). We prove that this ball is (closely) convex-compact in the convex topology. Given a set I, a real number p ≥ 1 (resp. p = 0), and some closed subse...

متن کامل

On completeness of quasi-pseudometric spaces

The notion of completeness in metric spaces and that of completing a metric space are traditionally discussed in terms of Cauchy sequences. The main reason being that this concept deals precisely with the issue of convergence of sequences in the sense that every convergent sequence is a Cauchy sequence. The paper deals with completion in a setting that avoids explicit reference to Cauchy sequen...

متن کامل

Countable Connected Spaces

Introduction, Let © be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. I t is known that an ©-space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an ©-space. Two ©-spaces, X and X*, more simply constructed and not involving identifications, are presented here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1998

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00138-7